钛合金激光熔覆硬质颗粒增强金属间化合物复合 涂层耐磨性

冯淑容 张述泉 王华明

(北京航空航天大学材料学院大型整体金属构件激光直接制造教育部工程研究中心,北京100191)

摘要 以54.51Ti-37.68Ni-7.81B₄C(元素前数字为质量分数值)粉末混合物为原料,利用激光熔覆技术在TA15 钛 合金基材表面制得了以外加未熔 B₄C 颗粒及快速凝固"原位"生成硼化钛和碳化钛为增强相,以金属间化合物 TiNi、Ti₂Ni 为基体的复合涂层。采用光学显微镜(OM)、X 射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪 (EDS)等手段分析了涂层显微组织,并测试了涂层的二体磨粒磨损性能。结果表明,激光熔覆硬质颗粒增强金属 间化合物复合涂层硬度高、组织均匀并表现出优异的抗磨粒磨损性能。高硬度、高耐磨的 B₄C、硼化钛和碳化钛陶 瓷增强相与高韧性 TiNi/Ti₂Ni 金属间化合物基体的强韧结合是激光熔覆涂层优异耐磨性的主要原因,其磨损机 理为轻微的显微切削和塑性变形。

关键词 激光技术;涂层;复合材料;激光熔覆;金属间化合物;磨损 中图分类号 TG146.4;TG148 文献标识码 A doi: 10.3788/CJL201239.0203002

Wear Resistance of Laser Clad Hard Particles Reinforced Intermetallic Composite Coating on TA15 Alloy

Feng Shurong Zhang Shuquan Wang Huaming

(Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Components, Beihang University, Beijing 100191, China)

Abstract A wear resistant hard particles reinforced intermetallic composite coating is fabricated on TA15 titanium alloy by the laser cladding process using 54. 51Ti-37. 68Ni-7. 81B₄C powder blends as the precursor materials. Microstructure and worn surface morphologies of the coating are characterized by optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under abrasive wear condition. Results indicate the hard particles including additional B_4C and in situ synthesized titanium boride and titanium carbide are uniformly distributed in the TiNi/Ti₂Ni dual-phase intermetallic matrix. The coating has high hardness and exhibits excellent wear resistance. The mainly wear mechanism of laser clad coating is slight micro-cutting and plastic deformation.

Key words laser technique; coating; composite; laser cladding; intermetallic; wear OCIS codes 310.1515; 310.3915

1引 言

以形状记忆效应著称的 TiNi 基金属间化合物 合金,由于其特有的伪弹性、强韧性好、耐蚀及生物 相容性好等优点,已经成为机械、电子、化工和生物 医学领域中应用日益广泛的材料。近期研究^[1~3]表明,近等原子比的 TiNi 合金虽然硬度很低,但却表现出比钴基耐磨合金 Co45 和渗氮钢 38CrMoAlA 优越的耐磨性,其可逆马氏体相变所导致的"超弹

导师简介:王华明(1962—),男,教授,博士生导师,主要从事激光材料加工与表面工程方面的研究。 E-mail: wanghuaming@buaa.edu.cn

收稿日期: 2011-09-13; 收到修改稿日期: 2011-10-12

基金项目:国家 973 计划(2011CB606305)资助课题。

作者简介:冯淑容(1985—),女,硕士研究生,主要从事钛合金激光熔覆涂层方面的研究。

E-mail: fengshurong2@yahoo.cn

性"被认为是其优良耐磨性的主要原因。在 Ti-Ni 二元合金系中,除 TiNi 外,还存在 Ti₂Ni 和 Ni₃Ti 两种金属间化合物。其中由于具有面心立方晶体结 构及高硬度(700HV),Ti₂Ni 不仅具有良好的韧性 而且广泛用于 TiNi 合金的沉淀析出强化相。高飞 等^[4,5]利用 52.04Ti-47.96Ni 合金粉末为原料,采用 激光熔化沉积技术制备出了 Ti₂Ni/TiNi 双相合金, 表现出比单相 TiNi 合金更优异的耐磨性。然而 Ti₂Ni/TiNi 合金低的显微硬度限制了其作为耐磨 新材料的广泛应用。显然,添加高硬质陶瓷相对 Ti₂Ni/TiNi 合金进行增强是提高 Ti₂Ni/TiNi 合金 耐磨性能的有效途径之一。

激光熔覆[6~8]具有能量高、冷却速度快、涂层稀 释率小、工艺过程易于实现自动化等优势,是近年来 广泛使用的一种新型表面改性技术。在高温下 B₄C 极易与Ti等金属完全反应生成高硬度、高熔点、耐 磨性优异的 TiB₂ 和 TiC 陶瓷颗粒,因此国内外研 究学者对以 B₄C 和 Ti 为原料生成的 TiB₂ 和 TiC 增强金属基复合材料进行了大量研究^[9~13]。结果 表明,复合材料的机械性能和耐磨性能都有显著提 高。然而原位生成的 TiB₂ 和 TiC 陶瓷颗粒尺寸细 小,对于抵抗显微切削或磨粒磨损的能力远不如大 尺寸硬质颗粒明显。B₄C具有仅次于金刚石和立方 氮化硼的超高硬度^[14~16],因此在激光熔覆过程中, 如果有意控制工艺参数,使 B₄C 部分熔解,让残留 下来的 B₄C 颗粒作为粗大的硬质增强相,在抵抗磨 粒磨损过程中充当第一道防护作用保护基体免受显 微切削;让熔解的 B₄C 与 Ti 反应原位生成细小的 TiB₂-TiC 颗粒弥散分布在基体中提高基体的硬度, 同时支撑粗大的 B₄C 颗粒防止其脱落。通过不同 尺寸陶瓷颗粒的共同配合,必将进一步提高复合材 料的抗显微切削和抗磨粒磨损性能。

本文利用激光熔覆技术,以 54.51Ti-37.68Ni-7.81B₄C 混合粉末为原料,在 TA15 钛合金表面上 制备出了以外加未熔 B₄C 颗粒及快速凝固"原位" 生成硼化钛和碳化钛为增强相,以金属间化合物 TiNi、Ti₂Ni 为基体的金属间化合物复合耐磨涂层, 分析了该涂层的显微组织、硬度及耐磨性能。

2 试验方法

选用 TA15 钛合金(50 mm×20 mm×10 mm) 为基材,以平均粒径为120~200 μm的纯钛、40~ 70 μm的纯镍和60~120 μm的B₄ C 粉末混合物 [质量分数(下同)为 54. 51Ti-37. 68Ni-7. 81B₄C]作 为激光熔覆合金原料。将上述粉末混合均匀后在 100 ℃电炉下保温 12 h,然后置于经过磨削及清洗 的 TA15 钛合金试样表面,预制粉末层厚度为 1.5 mm。激光熔覆试验在4 kW 的 YLS-4000 光纤 激光快速成形器上进行,成形腔中气氛氧体积分数 小于 8×10⁻⁵。为了防止激光熔覆过程中 B₄C 完全 熔解,实验采取了较低的激光功率和较快的扫描速 度。具体的激光工艺参数为:激光功率 3.5 kW,光 斑尺寸 4.5 mm,光束扫描速率 500 mm/min。

采用机械抛光方法制备金相试样,在室温条件 下使用体积比为 1:4:5的 HF, HNO₃ 和 H₂O 的混 合溶液腐蚀 3~5 s。利用 Olympus BX51 M 和 Leica 型光学金相显微镜及 Apllo-300 和 JSM-6700F型扫描电子显微镜(SEM)[自带能谱仪 (EDS)]观察显微组织;用 Dmax-rB 旋转阳极 X 射 线衍射(XRD)仪[采用 CuK。靶材,扫描速度 6(°)/ min,管压 40 kV]进行物相鉴定;用 HXZ-1000 型半 自动显微硬度计测定显微硬度(载荷 200 g, 加载保 持时间 10 s)。

二体磨粒磨损实验在如图 1 所示的二体磨粒磨 损机上进行,SiC 砂纸(粒度约 30 μm)为对磨材料, 以未进行激光熔覆处理的 TA15 钛合金试样作为标 样,试样直径为 6 mm。试验参数为:法向载荷 11 、 17、23 N,转盘转速 0.5 m/s,磨损时间 60 s。用精 度为 0.1 mg 的 Sartorius BS110 电子分析天平称取 试样及标样的磨损量作为评价试样耐磨性的标准, 磨损量越小,表明耐磨性越好。每次试验重复三次 取平均值。使用 Apllo-300 型 SEM 对试样及标样 二体磨粒磨损磨屑和磨损表面进行分析。利用原子 力显 微 镜 (AFM, Multimode Nanoscope III a, Veeco Instruments, USA)对磨损表面三维立体形 貌进行测试。

图 1 二体磨粒磨损试验机示意图

3 试验结果和讨论

3.1 显微组织及硬度分析

图 2 为 TA15 钛合金表面预涂 54.51Ti-37.68 Ni-7.81B₄C 粉末激光熔覆涂层 X 射线衍射谱图。 其主要组成相有 TiNi(M)、Ti₂Ni、TiB、TiC、TiB₂ 和 B₄C。图 3 为激光熔覆硬质颗粒增强金属间化合 物复合涂层横截面组织照片,可以看出通过激光工 艺参数的控制,涂层中保留了较大量的 B₄C 颗粒 , 且 B₄C 颗粒在涂层中分布均匀,尺寸在几十微米 之间。

图 2 激光熔覆涂层 XRD 谱图 Fig. 2 XRD pattern of the laser clad coating

图 3 激光熔覆涂层横截面组织照片。(a)低倍;(b)高倍;(c) B₄C 颗粒周围组织 Fig. 3 Overview longitudinal cross-section of laser clad coating. (a) Low magnitude; (b) high magnitude; (c) microstructure around B₄C particle

图 3(c)为 B₄C 颗粒与基体之间的界面结合图, 可以看出在激光熔覆过程中 B₄C 与基体之间发生 化学反应生成了一层明显的硼化钛和碳化钛过渡 层,结合非常牢固。图 4 为激光熔覆硬质颗粒增强 金属间化合物复合涂层 B₄C 颗粒与基体组织之间 的硬度分布曲线,可以看出 B₄C 颗粒具有超高的显 微硬度(3200HV),并且与基体之间硬度呈梯度分 布,并不存在较大的突变,这进一步说明了部分熔解 的 B₄C 颗粒与基体之间有一层陶瓷层过渡,而不是 简单的物理结合。另外由于原位生成的硼化钛和碳 化钛均匀分布在涂层基体中,基体也呈现出了远高

图 4 激光熔覆涂层 B₄C-基体组织之间显微硬度分布

Fig. 4 Microhardness profile between $B_t C$ and matrix of the laser clad coating

于 TA15 钛合金的硬度(700HV 左右)。

图 5 为激光熔覆涂层基体组织的光学显微镜 (OM)照片及背散射电子照片,可以看出激光熔覆涂 层基体组织致密均匀、无裂纹,原位合成的硼化钛、碳 化钛陶瓷均匀分布在 TiNi-Ti₂Ni 双相金属间化合物 中。图 5(b)中的黑色颗粒即为硼化钛和碳化钛,而 颜色较亮的区域为 TiNi 和 Ti₂Ni。进一步结合 EDS 分析结果得出,其中少量的树枝晶为 TiNi(48.74Ti-48.13Ni-2.68Al-0.45V),枝晶间为Ti₂Ni(65.7Ti-31.0Ni-2.73Al-0.5V)。另外,图5(c)表明原位生成 的陶瓷相除了多边形块状和长条状初生硼化钛外,还 有一种特殊的六边形硼化钛-碳化钛共晶组织,TiC 呈菊花状自液相中领先析出,如图 5(d)所示。这种 共晶组织对抑制单相陶瓷的长大起到了积极的作 用,同时有利于陶瓷韧性的提高。陶瓷含量测定结 果表明,涂层中陶瓷相体积分数约23%。图6表明 激光熔覆涂层与钛合金基材之间为完全冶金结合。

3.2 激光熔覆涂层的耐磨性

图 7 为激光熔覆硬质颗粒增强金属间化合物复 合涂层及 TA15 钛合金二体磨粒磨损试验结果,可 见激光熔覆涂层具有优异的抗磨粒磨损性能。在不 同实验载荷条件下,其磨损量都远低于 TA15 钛 合金。另外,涂层磨损量随载荷增加变化极小,而

图 5 激光熔覆涂层基体组织照片。(a) OM 照片;(b)低倍扫描;(c)高倍扫描;(d) TiB₂-TiC 共晶 Fig. 5 Matrix microstructure of laser clad coating. (a) OM micrograph; (b) low magnification SEM micrograph; (c) high magnification SEM micrograph; (d) TiB₂-TiC eutectic

图 6 激光熔覆涂层与 TA15 钛合金基材结合处 组织照片

Fig. 6 Microstructure in the coating/TA15 titanium substrate transition zone of the coating

Fig. 7 Wear mass losses of laser clad coating and TA15 titanium alloy as a function of loading under abrasive wear condition TA15 钛合金磨损量随载荷增大迅速增加,表明激 光熔覆涂层具有较低的磨损载荷敏感性,这对该涂 层在重载下作为耐磨材料应用具有较好的前景。

图 8 给出了激光熔覆涂层和 TA15 钛合金在 11 N,60 s二体磨粒磨损实验后的磨屑形貌,可见,基 材 TA15 合金磨屑主要由条状卷曲物和少量多边性 颗粒组成。EDS 分析结果表明条状卷曲物富含 Ti 元 素,主要来自于 TA15 钛合金;多边形颗粒主要含 Si, 是从砂纸上脱落的 SiC 颗粒,说明 TA15 钛合金遭到 了 SiC 颗粒的严重切削磨损。而激光熔覆涂层磨屑 中没有该条带卷曲物,均为从砂纸掉落下来的 SiC 颗 粒,由于磨损量很少,很难发现涂层磨屑的存在。

进一步结合在 11 N,60 s 二体磨粒磨损后的磨 损表面形貌(图 9),可以看出 TA15 钛合金表面有 明显的显微切削和犁沟痕迹,激光熔覆涂层表面则 为高低起伏的凹凸平面,大量 B₄C 颗粒牢固固定在 基体中没有剥落,磨损表面仅存在较为细小且浅显 的显微切削或擦划痕迹[图 9(b)]。图 10 为激光熔 覆涂层在 11 N,60 s 二体磨粒磨损后磨损表面凹凸 界面处的利用原子力显微镜获得的三维立体形貌。 从图 10 可知涂层具有极好的韧性,凹凸平面塑性变 形高达 5 µm,但并没有发生材料的脱离或脆性断裂 [图 9(b)]。

可见,激光熔覆硬质颗粒增强金属间化合物复合涂层优异的耐磨性是高硬、高耐磨B₄C颗粒、硼

图 8 在 11 N, 60 s 二体磨粒磨损后的磨屑形貌。(a) TA15 钛合金;(b)激光熔覆涂层 Fig. 8 Wear debris morphologies of laser clad coating. (a) TA15 titanium alloy; (b) after abrasive wear at the load of 11 N for 60 s

图 9 在 11 N, 60 s 二体磨粒磨损后的磨损表面。(a), (b)激光熔敷涂层;(c) TA15 钛合金 Fig. 9 Wore surface morphologies after abrasive wear test at the load of 11 N for 60 s. (a) and (b) laser clad coating; (c) TA15 titanium alloy

化钛和碳化钛陶瓷增强相与良好韧性 TiNi-Ti₂Ni 金属间化合物基体强韧结合的结果。首先,由于 B₄C 颗粒具有超高硬度(3200HV)、与基体组织结 合牢固且在涂层中分布均匀(图 3),在摩擦过程中 不仅起到了抵抗尖锐 SiC 颗粒的第一道防护作用, 还不断对 SiC 进行显微切削,导致其破裂脱落从而 降低了 SiC 颗粒对涂层进一步磨损的能力。其次, B₄C 与 Ti 反应原位生成的硼化钛和碳化钛显著提 高了 TiNi-Ti₂Ni 基体的硬度(700HV 左右),使得 SiC 磨粒不能像磨损 TA15 钛合金一样轻易对基体 进行显微切削,只能通过反复划擦使涂层缓慢地磨 耗。最后,由于马氏体自协调导致超弹性的 TiNi 和 面心立方结构的 Ti₂Ni 金属间化合物基体具有良好 的韧性,在摩擦过程中能够将陶瓷颗粒受到的力有 效地转移到基体中然后通过塑性变形将应力释放而 自身并不发生脆性断裂,从而显著缓解了陶瓷相与 基体之间界面上的剪切应力,避免了 B₄C、硼化钛和 碳化钛在磨损过程中的剥落。在反复的磨粒磨损过 程中,基体塑性变形不断累积就形成了如图 9,10 所 示高低起伏的凹凸平面,其二体磨粒磨损机理主要 为轻微的显微切削和塑性变形。

4 结 论

预涂 54.51Ti-37.68Ni-7.81B₄C 粉末混合物对 TA15 钛合金进行激光熔覆,获得了以外加未熔 B₄C 颗粒及快速凝固"原位"生成硼化钛和碳化钛为 增强相,以金属间化合物 TiNi-Ti₂Ni 为基体的复合 涂层。在二体磨粒磨损条件下,激光熔覆硬质颗粒 增强金属间化合物复合涂层表现出优异的抗磨粒磨 损性能,其磨损机理为轻微的显微切削和塑性变形。 高硬、高耐磨 B₄C 颗粒、硼化钛和碳化钛陶瓷增强 相与良好韧性 TiNi-Ti₂Ni 金属间化合物基体的强 韧结合是激光熔覆硬质颗粒增强金属间化合物复合 涂层优异耐磨性的主要原因。

参考文献

- 1 Li Ang, Li An, Zhang Lingyun et al.. Microstructure and wear resistance of laser melting deposited NiTi/Ni₃Ti intermetallic alloys[J]. Chinese Journal of Nonferrous Metals, 2006, 16(5): 867~873
- 李 昂,李 安,张凌云 等.激光熔化沉积 NiTi/Ni₃Ti 金属间 化合物合金的显微组织和耐磨性[J].中国有色金属学报,2006, **16**(5):867~873
- 2 D. Y. Li. Development of novel wear-resistant materials: TiNibased pseudoelastic tribomaterials [J]. Materials and Design, 2000, 21(6): 551~555
- 3 D. Y. Li. Development of novel tribo composites with TiNi shape memory alloy matrix[J]. *Wear*, 2003, **255**(1): 617~628
- 4 Gao Fei, Wang Huaming. Abrasive wear property of laser melting/deposited Ti₂Ni/TiNi intermetallic alloy [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6): 1358~1362
- 5 F. Gao, H. M. Wang. Dry sliding wear property of a laser melting/deposited Ti₂Ni/TiNi intermetallic alloy [J]. Intermetallics, 2008, $16(2): 202 \sim 208$
- 6 Ma Xingwei, Jin Zhuji, Gao Yuzhou. Effect of rare earth La₂O₃ on microstructure and tribological property of laser cladding FeAl based alloys and TiC reinforced composites coatings[J]. Chinese J. Lasers, 2010, **37**(1): 271~276
 - 马兴伟,金洙吉,高玉周.稀土 La_2O_3 对激光熔覆铁铝基合金及 TiC 增强复合材料涂层组织及摩擦磨损性能的影响[J].中国激 光,2010,**37**(1):271~276
- 7 Zhu Gangxian, Zhang Anfeng, Li Dichen. Effect of process

parameters on surface smoothness in laser cladding [J]. Chinese J. Lasers, 2010, 37(1); 296~301

- 朱刚贤,张安峰,李涤尘.激光熔覆工艺参数对熔覆层表面平整度的影响[J].中国激光,2010,**37**(1):296~301
- 8 Gao Xuesong, Huang Yinhui, Tian Zongjun *et al.*. Erosive wear resistance behavior of laser cladding Al₂O₃ + 13% TiO₂ coating prepared by plasma spraying on titanium alloy surface[J]. *Chinese* J. Lasers, 2010, **37**(3): 858~862

高雪松,黄因慧,田宗军等. 钛合金表面激光熔覆等离子体喷涂 Al₂O₃+13% TiO₂ 涂层冲蚀磨损性能[J]. 中国激光, 2010, **37**(3): 858~862

- 9 Weijie Lu, Di Zhang, Xiaonong Zhang et al.. Creep rupture life of in situ synthesized (TiB+TiC)/Ti matrix composites [J]. Scripta Mater., 2001, 44(10): 2449~2455
- 10 Yafeng Yang, Huiyuan Wang, Yunhong Liang et al.. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB₂ particulates using SHS reactions of Ni-Ti-B₄C and Ni-Ti-B₄C-C systems during casting[J]. Materials Science and Engineering A, 2007, 445-446: 398~404
- 11 Minmin Wang, Weijie Lu, Jining Qin et al.. Effect of volume fraction of reinforcement on room temperature tensile property of in situ (TiB + TiC)/Ti matrix composites [J]. Materials and Design, 2006, 27(6): 494~498
- 12 G. Wen, S. B. Li, B. S. Zhang *et al.*. Reaction Synthesis of TiB₂-TiC composites with enhanced toughness[J]. Acta Mater., 2001, 49(8): 1463~1470
- 13 Tian Hao, Geng Lin, Ni Ding *et al.*. Microstructure of laser cladding coating with pre-placed B₄C and B₄C + Ti powders on TC₄ substrate[J]. *Rare Metal Materials and Engineering*, 2007, **36**(3): 420~423
 田 浩, 耿 林, 倪丁瑞等. TC₄ 合金表面激光熔覆 B₄C 及 B₄C + Ti 教主会臣的微观组织[1]. 養在全界材料科学与工程, 2007

+Ti 粉末涂层的微观组织[J]. 稀有金属材料科学与工程,2007, **36**(3):420~423

14 Ding Shuo, Wen Guangwu, Lei Tingquan. The development of boron carbides [J]. Materials Science & Technology, 2003, 11(1): 101~105

丁 硕,温广武,雷廷权.碳化硼材料研究进展[J]. 材料科学与 エ艺,2003,11(1):101~105

- 15 Pei Lizhai, Xiao Hanning, Zhu Baojun *et al.*. Latest development of boron carbide powder and diphase ceramics[J]. *Rare Metals and Cemented Carbides*, 2004, **32**(4): 46~50 裹立宅,肖汉宁,祝宝军等. 碳化硼粉末及其复相陶瓷的研究现 状与进展[J]. 稀有金属与硬质合金,2004, **32**(4): 46~50
- 16 Q. C. Jiang, H. Y. Wang, B. X. Ma et al., Fabrication of B₄C particulate reinforced magnesium matrix composite by powder metallurgy [J]. Journal of Alloys and Compounds, 2005, 386(1): 177~181

栏目编辑:韩 峰